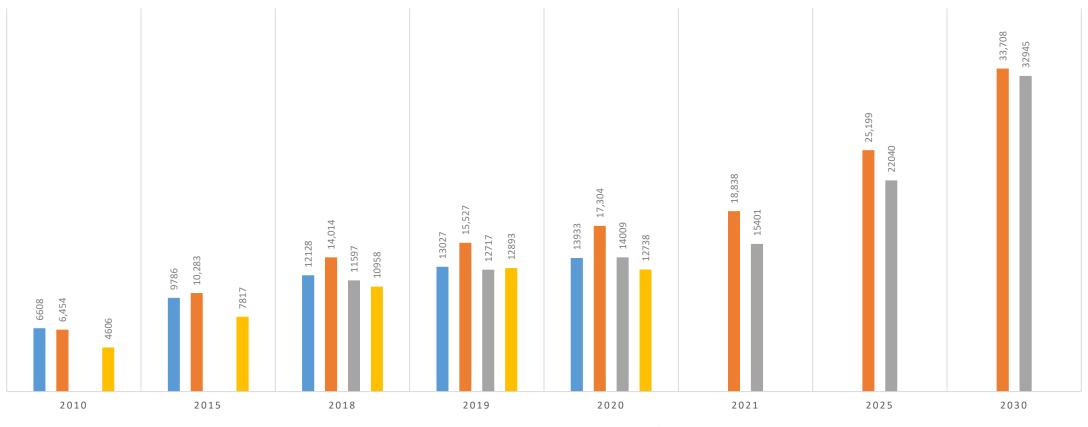
Electricity Demand-Supply in Bangladesh

and The State of Reality

M Tamim

PMRE Dept, BUET

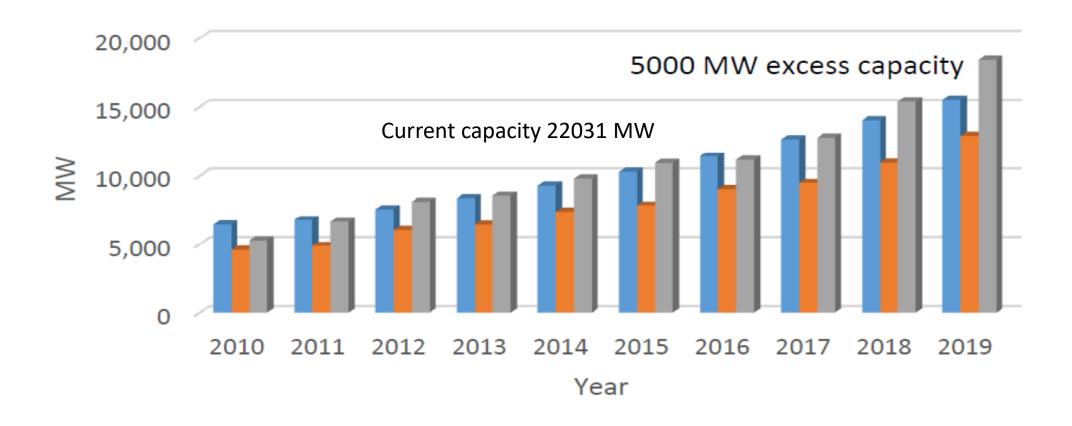

mohammad.tamim@gmail.com

Current issues in power sector

- •Supply demand mismatch hence excess generation capacity (forecasting error?)
- Dilemma over future fuel mix
- Decarbonization of power sector and the world energy transition
- Pricing and subsidy

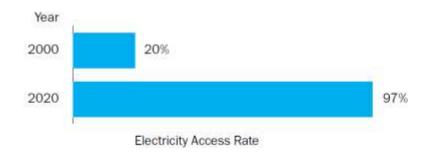
Forecast and actual demand

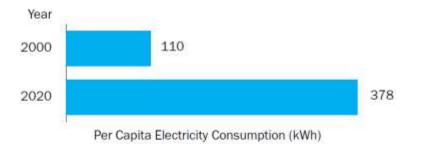
■ PSMP 05 ■ PSMP10 ■ PSMP16 ■ Actual

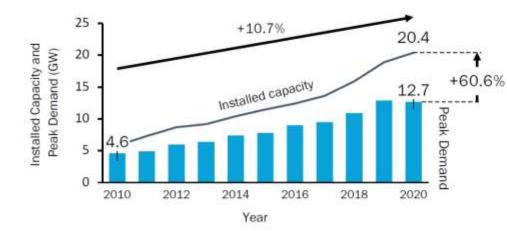


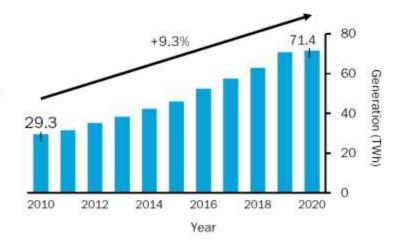
Demand forecast and supply plan

Policy Document	2015	2020-2021	2025	2030-2031		
	Demand Forecast (MW)					
PSMP 2010	10,283	17,304	25,199	33,708		
PSMP 2016		12,949	19,191	27,437		
		Supply Plar	nning (MW)			
2015-2016 Budget and 7 th Five Year Plan (2016-2020)	14,943	23,000				
8 th Five Year Plan (2021 -2025)		24,000	30,000			
BPDB (under the government policy)		24,000		40,000		


Excess capacity dilemma






PSMP2010 Actual Derated capacity

Success since 2000

System losses (FY 2020) 8%

SAIDI (FY 2020) 1,136 minutes

SAIFI (FY 2020) 47 interruptions

Source: Power Sector Reform in Bangladesh, USAID, May 2021

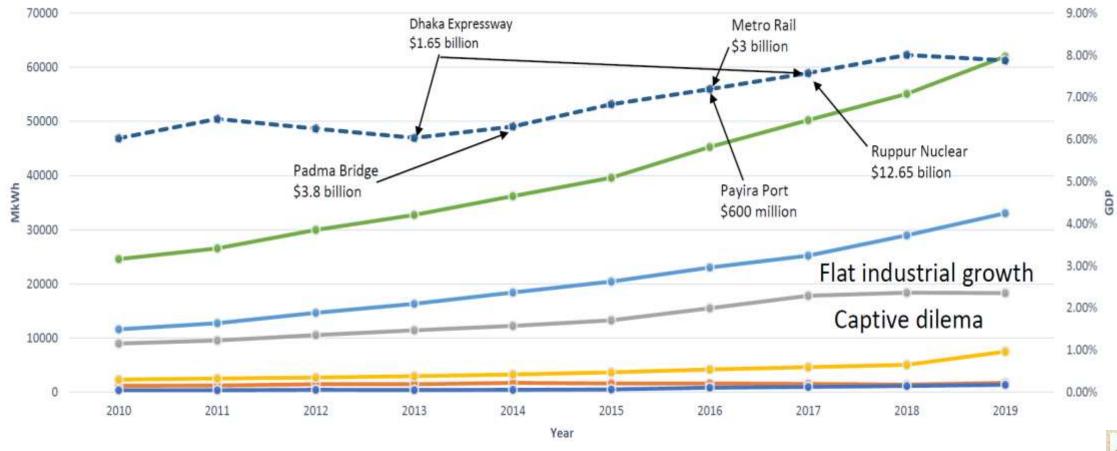
Findings

- About 10000 MW over estimate in short term
- PSMP 2016 made most realistic prediction
- The revised supply plan was based on revised PSMP 2016 (in 2018)
- Planning and the supply numbers do not mention actual delivery capacity and hence confusing
- Current 25000 MW includes 2800 MW captive, about 500 MW renewable (including SHS)
- Energy (MWh) and capacity (MW) are used as equivalent. Capacity increased 3.64 times and generation increased 2.36 times during 2010-2020

Electricity generation report (in MW) of Sept 6, 2020 (understanding excess capacity)

Installed capacity		Probable max generation		Gas/water/co al shortage	Shutdown/ Maintenance
20383	19892	(19892-3607) x 0.9 =14859	12892	1969 + 1638 = 3607	

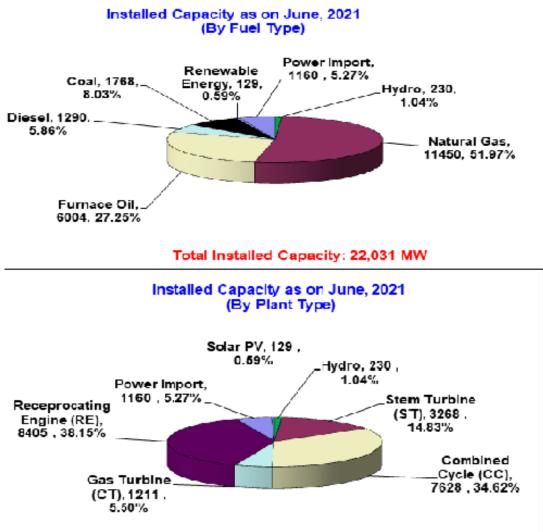
- A total of 3607 MW (1969+1638) was not producing any electricity due to fuel shortage or forced/scheduled shutdown leaving 16285 MW capacity for delivery
- Out of this a maximum of 14859 MW electricity could be generated with an average plant availability of 90%.
- The maximum expected demand was 13000 MW keeping only about 13% excess capacity
- The key to the excess capacity is the 3607 MW



Seasonal Variation

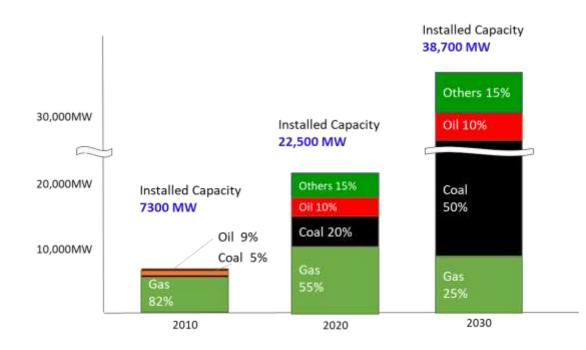
- With the same generation capacity during the winter, the excess looks even worse.
- The lowest demand in 2020 was on January 4th with an evening demand of 7537 MW.
- If one looks at the highest and lowest demand of 2020, an enormous gap of 5500 MW between summer and winter is noted.
- Although the average seasonal peak demand variation is more in the range of 3000-3500 MW.
- This difference is principally due to cooling load from air-conditioning and fans and also lower efficiency of generation during the hot summer months.
- Currently, Bangladesh has no other option but to keep this excess capacity standby during the 4/5 months of colder period.

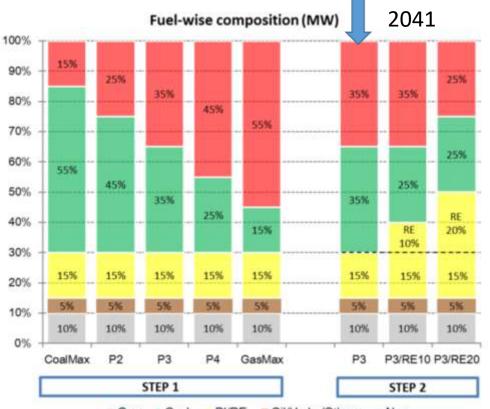
GDP and sectoral power growth



Growth analysis from past performance

- Electricity growth forecast must be decoupled from economic growth
- Power growth must be predicted sector wise independently
- Since 2017, the industry's percentage share of grid electricity is stagnant
- Massive power demand from industry is essential for grid power demand growth
- Currently the highest growth is in domestic sector and its peak can be predicted and will taper off at one point
- Potential growth in commercial sector
- Short term accurate forecast is required


The fuel dilemma

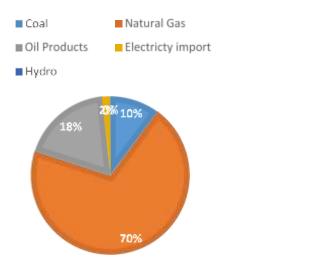


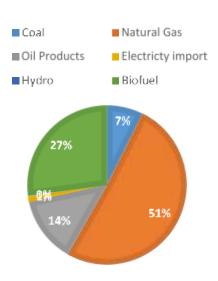
Total Installed Capacity: 22,031 MW

Fuel mix (changing every 5 years)

Gas Coal PI/RE Oil/Hydro/Others Nuc

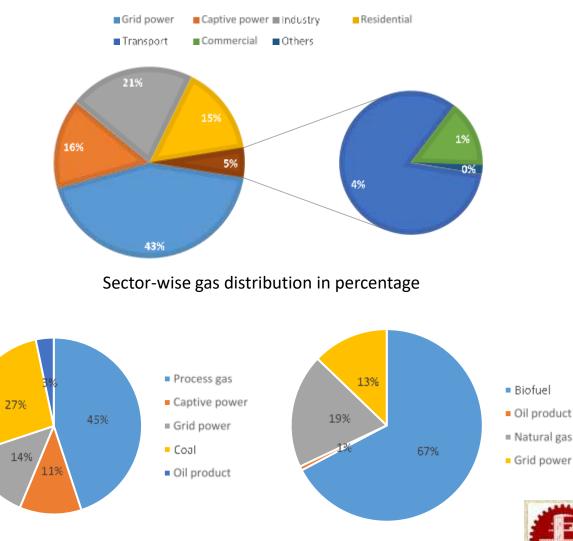
PSMP 2010


PSMP 2016


Energy Transition

- Global warming and green house gas effect (Limiting temperature rise to 1.5° C by 2050). Bringing emission down to pre industry era
- Bangladesh NDC commitment of 5% to 15% emission reduction by 2030 from BAU scenario
- 10% electricity coming from RE by 2030 (currently 140 MW grid solar)
- Bangladesh carbon footprint about 0.5 ton/person/year. No obligation of emission reduction under Paris Accord
- Shortage of fund, technology, RE resource, land and capacity
- Can we compromise with economic growth?

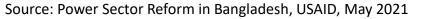
Case for gas as transition fuel



Primary Energy without biofuel (2018-19)

۲

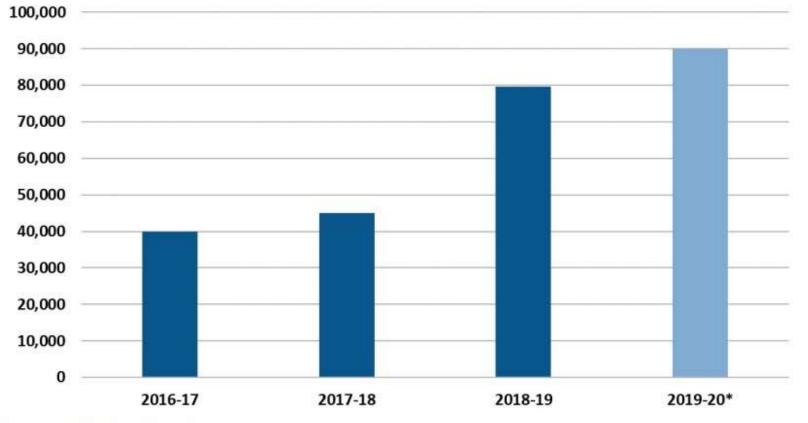
Primary Energy with biofuel (2018-19)


- Economy heavily dependent on gas (non-power sector)
- Massive gas based infrastructure
- Half carbon emission than coal in power production
- 22% gas use in transport sector

Energy use in Industries

Deficit in unit generation cost (2020)

Fuel Type	Plant Factor	Fuel Cost	Variable Cost	Fixed Cost	Generation Cost	
Imported power	66%	-	1.66	4.3	6.01	
Hydro	41%		0.42	1.4	1.82	
Renewable (solar & wind)	19%	9	9.89	1.9	11.82	
Gas	52%	1.15	0.15	2.0	3.26	
Coal	30%	4.66	0.07	1.9	6.62	
Furnace oil	19%	7.90	0.29	6.7	14.89	
High-speed diesel	1.2%	19.28	1.02	55.		
Total	39%	2.13	0.32	3.13	5.58	
Interest on budgetary support					0.19	
Maintenance and development fund					0.15	
Average generation cost, FY 2020						
Average bulk supply tariff (BERC), effective March 2020						
Actual bulk supply cost					4.86	
Loss (BDT/kWh)					1.05	



Subsidy

Bangladesh Power Development Board Subsidies Received

(Millions BDT)

0

*Expected 2019-20 subsidy.

Current Rates for Industry

Tariff projection by PSMP(2015 ref)

Electricity Price (Tk/kWh) 2020

	Tk/kWh	
2021	8.52	Flat
2031	11.02	Off p
2041	12.79	Peak

	Small Ind	11 kV (Ind)	33 kV (Ind)
Flat	8.53	8.55	8.45
Off peak	7.68	7.70	7.69
Peak	10.24	10.69	10.56

Captive Power (gas price Tk13.8/m3)

Tk.4.25/kWh

Average gas sales price \$3.3/Mcf but need to be \$5/Mcf to offset LNG import

Probable base load options

Fuel Cat	\$/MMBTU	Fuel Cost (C/kWh)	Capacity Charge (C/kWh)	F&V O&M	Total (C/kWh)	Total Tk/kWh
Domestic Coal	4.77	3.74	2.80	0.80	7.50	6.00
Imported Coal	5.82	4.81	3.50	0.80	9.00	7.20
Nuclear	0.91	0.94	5.80	1.30	8.10	6.45
CC (LNG)	14.00	9.37	1.80	0.65	11.80	9.40
Cross Boarder					8.00	6.40

Conclusion

- Over capacity will be very expensive, so short, mid and long term planning should be accurate and 2, 5 and 10 year long based on bottom up sector wise demand growth forecast
- Power forecast must be decoupled from economic forecast
- Industrial electricity usage must be increased
 - Uninterrupted quality power must be ensured
 - Captive and grid power tariff gap has to be reduced
- Natural gas (LNG and indigenous) will be the transition fuel for both power and non-power sector for the next twenty years
 - Land based LNG facility must be developed rapidly along with exploration

Conclusion (contd.)

- For oil based power plants
 - Most should be phased out at the earliest
 - Depending on the capacity and the seasonal demand gap, some extension of the efficient plants can be granted on 'no electricity no payment ' basis
 - No new oil based power plant should be installed
 - HFO is highest Sox and Nox producer and emits just 20% less CO2 than coal
- For coal
 - Keep the existing ongoing projects without any expansion plan
 - Plan to phase them out in 20-30 year time horizon
- Renewable
 - Full effort for solar grid, rooftop, wind, biogas with a 30 to 40% power generation share target by 2050
- Major drive for both supply and demand side efficiency improvement

Conclusion (contd.)

- Should import as much electricity as possible and expand regional cooperation
- Electricity price increase is inevitable. A realistic tariff predictor based on fuel mix must be developed
- Subsidy should be minimized with an aim to abolish it. Targeted subsidy model on household income can be implemented

